Number of Complex Eigenvalues for a Class of Dissipative Schrödinger Operators

نویسنده

  • XUE PING WANG
چکیده

For a class of dissipative Schrödinger operators H = −∆ + V (x) with a complex-valued potential V = V1−iV2 with V2 ≥ 0 and |V (x)| = O(|x| ) as |x| tends to infinity, we prove that the complex eigenvalues of H can not accumulate to zero. In the perturbation regime where V2 is sufficiently small, we show under some conditions that N(V ) = N(V1)+k, where k is the multiplicity of the zero resonance of −∆ + V1 and N(V ) (resp., N(V1) ) is the number of eigenvalues of −∆+ V (resp., −∆+ V1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Number of Eigenvalues for a Class of Non-selfadjoint Schrödinger Operators

In this article, we prove the finiteness of the number of eigenvalues for a class of Schrödinger operators H = −∆ + V (x) with a complex-valued potential V (x) on R, n ≥ 2. If IV is sufficiently small, IV ≤ 0 and IV 6= 0, we show that N(V ) = N(RV )+k, where k is the multiplicity of the zero resonance of the selfadjoint operator−∆+RV and N(W ) the number of eigenvalues of −∆+W , counted accordi...

متن کامل

High energy eigenfunctions of one-dimensional Schrödinger operators with polynomial potentials

For a class of one-dimensional Schrödinger operators with polynomial potentials that includes Hermitian and PT -symmetric operators, we show that the zeros of scaled eigenfunctions have a limit distribution in the complex plane as the eigenvalues tend to infinity. This limit distribution depends only on the degree of the polynomial potential and on the boundary conditions.

متن کامل

A Sharp Bound on Eigenvalues of Schrödinger Operators on the Halfline with Complex-valued Potentials

We derive a sharp bound on the location of non-positive eigenvalues of Schrödinger operators on the halfline with complex-valued potentials.

متن کامل

A weak Gordon type condition for absence of eigenvalues of one-dimensional Schrödinger operators

We study one-dimensional Schrödinger operators with complex measures as potentials and present an improved criterion for absence of eigenvalues which involves a weak local periodicity condition. The criterion leads to sharp quantitative bounds on the eigenvalues. We apply our result to quasiperiodic measures as potentials. MSC2010: 34L15, 34L40, 81Q10, 81Q12

متن کامل

Schrödinger operators with n positive eigenvalues: an explicit construction involving complex valued potentials

An explicit construction is provided for embedding n positive eigenvalues in the spectrum of a Schrödinger operator on the half-line with a Dirichlet boundary condition at the origin. The resulting potential is of von Neumann-Wigner type, but can be real valued as well as complex valued.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009